Introduction to Statistics in Political Science

Political Science 812 Fall 2012

Lecture Location 3534 Engineering Hall
Lecture Time Tuesday & Thursday 11:00am–12:15pm
Section Location SSCC Computer Lab, 3218 Social Sciences
Section Times Friday 9:55am & 11:00am

Instructor Alexander Tahk
Email atahk@wisc.edu
Office 305 North Hall
Phone 608-263-2297 (office), 608-265-2663 (fax)
Office Hours Wednesday 1:30–4:00pm

Teaching Assistant Bugrahan Budak
Email budak@wisc.edu
Office 122 North Hall
Office Hours Wednesday 3:00–4:30pm & Thursday 9:00–10:30am

Overview

Political scientists employ increasingly sophisticated statistical methods. Understanding these methods—and new ones that will undoubtedly become available—requires a firm foundation in mathematical statistics. This course is intended to provide this foundation so that students can continue their methods training with subsequent courses in the department (PS 813 and PS 818) as well as other advanced courses and self-learning. It will also provide some applications that illustrate concepts and introduce students to empirical political science research.

Textbooks

The primary textbook for this course is:

However, you do not need the most recent edition of this textbook. An earlier edition should cover the same material and may be less expensive.

Many other treatments of this material are available. Two good possibilities are:

Either of these should be an adequate substitute for Wackerly, Mendenhall, and Scheaffer if desired.
For a bit more or less rigorous treatment, respectively, consider:

For a mathematical review, I also recommend the following book:

Sections

Weekly sections will be held in the SSCC Computer Lab. These sections will focus primarily on statistical computing, including instruction in using statistical software and practical computer exercises.

Statistical computing

Computational components of the problem sets will make use of R, an implementation of the S statistical programming language. It can be downloaded for free from http://www.r-project.org/. We will also use Stata at the end of the course when we cover linear regression.

Grading

Grading will be divided between problem sets (15%), a midterm exam (25%), a final exam (50%), and a data analysis report (10%).

Problem sets

There will be short problem sets handed out in class, typically one every week and due in class one week later. These will be graded on a check/check-minus/zero basis. Late assignments are strongly discouraged. A pattern of late assignments will result in a grade penalty. Assignments more than one week late will not be accepted.

The problem sets will cover both theory and application. You are welcome to discuss the problem sets with each other and run programs together, but the final write-ups should be your own. Also, note that simply copying R or Stata output without reformatting is not an appropriate.

Midterm exam

There will be an in-class midterm on **October 23**. In addition to counting towards your final grade, the exam should serve as an indicator of your progress in the course.

Final exam

There will be a *cumulative* final exam held during exam week (the date will be scheduled during the first week of classes).
Data analysis report

Students will complete a report employing basic methods to answer an empirical question of their own choosing. Data will typically come from a common political science data set (American National Election Study, Correlates of War, etc.). A literature review is unnecessary. Papers should be roughly five pages and are due on the last class (December 13).

Prerequisites

This course has no formal prerequisites. However, you are assumed to have been exposed to differential and integral calculus. No background in linear algebra is needed.

Topics and readings

The syllabus is organized around topics rather than by day. We will typically spend around one week per topic, but may spend more or less. I suggest you read through the material before class and again after it is discussed in class. Even a quick skim of the material beforehand is very beneficial.

Introduction and overview

Overview of estimation, inference, and presentation in political science
Frequentist and subjectivist interpretations
Introductory case: the butterfly ballot
Reading: WMS, Chapter 1

Probability foundations

Laws of probability
Random variables
Bayes’ theorem
Reading: WMS, Chapter 2

Discrete probability distributions

Probability mass functions
Cumulative distribution functions
Common discrete density functions
Reading: WMS, Chapter 3

Continuous probability distributions

Probability density functions
Common continuous density functions
Reading: WMS, Chapter 4
Basics of mathematical statistics
Mean and variance
Covariance and correlation
Non-central and central moments
Functions of a random variable

Reading: WMS, Chapters 5 & 6

Limits and asymptotic distributions
Probability limits
Law of large numbers
Central limit theorem
Normal approximation to the binomial distribution

Reading: WMS, Chapter 7

Point estimation
Bias
Consistency
Mean squared error

Reading: WMS, Chapters 8.1–8.4 & 9.3

Maximum likelihood
Maximum likelihood
Method of moments
Properties of MLEs

Reading: WMS, Chapter 9 (especially 9.7)
Optional:

Inference and hypothesis testing
Introduction to hypothesis testing
Neyman-Pearson lemma
Difference of means

Reading: WMS, Chapter 10

Interval estimation
Introduction to confidence intervals
Large-sample confidence intervals

Reading: WMS, Chapter 8.5–8.9
Analysis of categorical data

Contingency tables
Chi-square test
Fisher exact test

Reading: WMS, Chapter 14

Analysis of variance

One-way analysis of variance

Reading: WMS, Chapter 13.1–13.5
Political Research Quarterly 52(2): 293–322.

Introduction to ordinary least squares

Linear statistical models
Bivariate ordinary least squares

Reading: WMS, Chapter 11.1–11.9